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Latent heats from finite-size scaling 
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National University, Canberra, ACT 2600, Australia 

Received 29 November 1982 

Abstract. A method of obtaining the latent heat at a first-order transition from finite-lattice 
matrix elements is discussed, and demonstrated for the case of the ( 1  + I )D Potts model. 
The method is shown to provide smoothly convergent finite-lattice sequences. The structure 
of the finite-lattice Hamiltonian eigenvalues is exhibited, and a characteristic signal of the 
first-order transition is proposed. The finite-size scaling behaviour at the transition is also 
discussed. 

1. Introduction 

First-order transitions are difficult to treat by finite-size scaling methods (Fisher 1971, 
Fisher and Barber 1972, Barber 1982). The problem is that the thermodynamic 
functions are always analytic on a finite lattice, so that the latent heat and order 
parameter always vanish at the point of transition. It is, therefore, impossible to scale 
these quantities in the normal manner in order to estimate their (non-zero) bulk limit. 
Furthermore, it is sometimes extremely difficult to distinguish the first-order transition 
from a second-order one (Kim and Joseph 1975, Roomany and Wyld 1980, Hamer 
1981). 

One may try to proceed by a double limiting process: that is, by calculating the 
free energy and its derivatives away from the transition point, taking the lattice size 
to infinity (bulk limit), and then extrapolating to the transition point from either side. 
This should, in principle, give the correct latent heat; but it is a cumbersome and 
delicate procedure, since the convergence is non-uniform, and the resulting numerical 
accuracy is low (Hamer 1981). 

A solution to this problem, due originally to Yang (1952) and Uzelac (1980, see 
also Uzelac and Jullien 1981) was recently discussed (Hamer 1982). The method 
involves consideration of the submatrix of the transfer matrix (or equivalent field 
theory Hamiltonian) spanned by those eigenvectors which become degenerate with 
the ground state at the transition point. In Hamer (1982), it was shown that the 
spontaneous magnetisation and exponent p could be calculated with excellent accuracy 
using this method. In the present work, we demonstrate that latent heats can be 
calculated using the same method, by applying it to the Potts model in (1 + 1) 
dimensions. It is also shown, following Igl6i and Solyom (1982), that the structure 
of the finite-lattice eigenvalues provides a sensitive test to distinguish whether the 
transition is first or second order. 

@ 1983 The Institute of Physics 3085 
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Let us first discuss the idea in general terms. In a Hamiltonian field theory 
framework? (Kogut 1979, Barber 1982), we may write the quantum Hamiltonian as 
follows 

(1) H = Ho(Ac) + tV 

where A c  is the coupling (or temperature variable) at the transition point, and t = A  - A ,  
measures the distance from the transition. Suppose that the two lowest energy 
eigenvectors of this Hamiltonian, denoted 11) and 12), become degenerate at t = 0 in 
the bulk limit (the argument is easily generalised to the case of more than two 
degenerate eigenvalues). Then the ground state energy near t = 0 is equal to the 
minimum eigenvalue of the 2 x 2 matrix 

where E: is the unperturbed eigenvalue of states 11) and 12), and Vij=(ilVlj). Let 
p+ and F -  denote the maximum and minimum eigenvalues, respectively, of the 2 x 2 
matrix {Vii}. Then it follows that the vacuum energy per site on either side of the 
transition point is given by 

where N is the number of sites in the lattice; and hence the latent heat per site is 

L=l im 1 - O N - m  lim (L[5(-t)--(+t) N at aEo at ]} = N + m  lim { (p+-p . . ) /N} .  (4) 

Now the relation (4) depends on the exact degeneracy of the states 11) and 12), 
which only occurs in the bulk limit N + CO. On a finite lattice, the states are non- 
degenerate, and there is no discontinuity in the slope of Eo(t) .  But the matrix 
eigenvalues p+ and p -  are certainly non-zero, and in fact the right-hand side of 
equation (4) turns out to provide a smooth sequence converging to the bulk latent 
heat as the lattice size N + CO. Thus our finite-size scaling problem is solved. 

2. Formulation 

Let us apply the above method to the Q-state Potts model in (1 + 1) dimensions. This 
model is known to undergo a first-order transition for Q >4, and its latent heat is 
known exactly (Hamer 1981) from the work of Baxter (1973): so our numerical results 
may be compared with the exact solution. Now in order to treat the higher Q val,ues, 
it is convenient to work with the equivalent eight-vertex model (Baxter 1973), whose 

+ To translate this argument to the ordinary Euclidean framework of statistical mechanics, one simply 
replaces ‘quantum Hamiltonian’ by (minus the) ‘logarithm of the transfer matrix’, ‘ground-state energy 
by ‘free energy’, etc (Kogut 1979, Barber 1982). 
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quantum Hamiltonian takes the form (Hamer 1981) 

H = (F) {l-cosh v(l+(-l)”t’)[(a”,a^,+l + ~ k : + ~ )  
n = l  

+ cosh v (1 - ~+:a: + )] - (- 1 )“t’ sinh(2u)u:) ( 5 )  

where t ’ =  (1 - A ) / ( l  + A ) ,  coshv = :Q1”, and the a;  are Pauli matrices acting on a 
two-state spin variable at each site. The time variable is continuous, while in space 
the system forms a one-dimensional lattice of 2M sites, with periodic boundary 
conditions. This corresponds to an M-site system in the original Potts model. Note 
that the number of states Q appears merely as a parameter in this version of the model. 

Now the Potts model is self-dual (ignoring boundary effects), so that (Mittag and 
Stephen 1971, Solyom 1981) 

H ( A )  = h H ( l / h )  (6) 

and the first-order transition occurs at the self-dual point, A = 1. From equation (6) 
there follows the useful relation 

where t = 1 - A ,  as in 9: 1. At the transition point, the following exact results are known 
(Yang and Yang 1966, Baxter 1973, Johnson et a1 1973, Hamer 1981): the ground 
state energy in the bulk limit is 

(8) 
r 

=2-Q-Q1’2(Q-4)  1 
n = l  [cosh v -cosh(2n +,)VI’  

the latent heat is 
ot 

L = 2 s i n h 2 v  n tanh2nv 
n = l  

(9) 

Q - 4 +  - 47rQ1’* exp[-7r2/2(Q - 4 p 2 ] ;  (10) 

and the mass gap is 
m - 2  oc 

q n 2 )  n tanh4nu (q = e-.”) (11) 
n = l  

Q + 4 +  - 8 ~ Q l ’ ~  exp[-7r2/(Q -4)1’2]. (12) 

3. Results 

Using the methods of Hamer and Barber (1981a), we have set up the Hamiltonian 
(5) on finite lattices of 2, 4, 6 , .  . . , 14 sites, and calculated its low-lying, translation- 
invariant eigenvectors and eigenvalues, for the cases Q = 4, 5, 6, 8 and 12. Hence 
the matrix { Vii} and its eigenvalues p* can be derived. 
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3.1, Eigenvalue structure 

Consider first the structure of the finite-lattice eigenvalues near the transition point. 
In a most interesting recent paper, Igl6i and S6lyom (1982)  have shown that the 
eigenvaluesof the original Potts model behave in afashion illustrated in figures l ( a ) - ( e ) ,  
The spectrum of the model breaks up into Q disjoint sectors of states, each sector 
labelled by the sum of all spins on the lattice, modulo Q. In the vacuum sector, the 
mass gap to the second lowest state behaves as shown in figure l (a) ,  exhibiting a dip 
near A = 1 for any finite lattice size. As the lattice size M increases, this dip becomes 
deeper and sharper, until in the bulk limit M + CO it approaches the curve shown in 
figure l ( 6 ) .  Thus the mass gap at A = 1 vanishes in this limit, producing a first-order 
transition as outlined above; and yet, if one takes M -P CO at fixed A # 1, and then lets 
A + 1, the mass gap approaches a finite limit, corresponding to the finite bulk correlation 
length. Thus the Potts model manages to ‘have its cake and eat it’. 

In each of the (Q - 1 )  non-vacuum sectors, the mass gap to the lowest-lying state 
behaves as shown in figure l (c)  on a finite lattice, and develops a step-function 
discontinuity in the bulk limit, figure l ( d ) .  These states become degenerate with the 
vacuum for A > 1 in the bulk limit, producing the overall Q-fold degeneracy which 

Vacuum, sector 

M--sl 

Non- vncuum, sectors 

Nan-vacuum sectors 

I Vncuum sector I 

Nan-vacuum sectors 

~ lhl i I M 
Figure 1. A schematicdiagram of the finite-size scaling behaviour of low-lying Hamiltonian 
eigenvalues, relative to the ground-state energy. ( a ) - ( e )  describe the original Potts model 
(after Igl6i and Solyom 1982); c f ) - ( k )  are for the equivalent eight-vertex model. The 
left-hand frame depicts the typical behaviour for finite lattice size M in each sector, while 
the middle frame depicts the behaviour in the bulk limit M + m .  The two right-hand 
frames show the overall eigenvalue pattern in the bulk limit for each model. The numbers 
attached to some of the eigenvalue branches are their degeneracy factors. 
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one expects in this region. The overall pattern of low-lying eigenvalues in the bulk 
limit is shown in figure l (e ) :  again, it can be seen that the mass gap remains finite as 
A+1.  

In the case of the equivalent eight-vertex model Hamiltonian, equation ( 5 ) ,  the 
situation is illustrated in figures 1( f ) - ( k ) .  The fundamental mechanism remains the 
same: the mass gap in the vacuum sector develops a spike in the bulk limit, driving 
the first-order transition. In the non-vacuum sectors, however, the pattern is quite 
different: the mass gap remains finite everywhere, and develops only a cusp singularity 
in the bulk limit. The overall eigenvalue pattern is shown in figure l (k) ,  and is identical 
to figure l (e) ,  except that the degeneracy factors are different for the various eigenvalue 
branches. This is just what one should expect from the operator algebra equivalence 
between the two models (Temperley and Lieb 1971, Baxter 1973, 1982). 

To support these statements about the equivalent eight-vertex model, some nume- 
rical finite-lattice results are exhibited in figure 2, for the case Q = 12. Figure 2(a) 
shows some results for the mass gap in the non-vacuum sectors at lattice sizes M s 7, 
together with some estimates for the bulk limit, obtained by an iterated Aitken 
sequence extrapolation algorithm (Hamer and Barber 198 lb). The gradual 

01 
0 9  10 11 

x 
Figure 2. Mass gap values for the Potts-equivalent eight-vertex model at Q = 12, plotted 
as functions of the coupling A. ( a )  shows the gap in the non-vacuum sectors. The broken 
curves are finite-lattice results, labelled by the lattice size M. The open circles are estimates 
of the bulk limit, obtained by sequence extrapolation from the finite-lattice results, and 
the open square is the exactly known result at A = 1. ( b )  shows the gap in the vacuum 
sector, where the full curve represents the expected bulk limit. 
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development of the cusp singularity is apparent. Figure 2(b), by contrast, shows the 
mass gap in the vacuum sector, together with the expected bulk limit. Here the dip 
at A = 1 is much deeper and sharper, developing into a sharp spike which runs down 
to touch the axis as M -, CO. 

3.2. Scaling properties 

Let us now discuss the finite-size scaling properties of the system. If one plots the 
‘scaled mass-gap ratio’ (Hamer and Barber 1981a) for the vacuum sector mass 
gap, 

R, (A)=MF, (A ,M) / (M- l )F , (h ,M- l ) ,  (13) 

the result is shown in figure 3, for the case 0 = 12. Now for an ordinary second-order 
critical point, one expects the mass gap to scale as 1/M at the critical point (Fisher 
1971, Nightingale 1977, Hamer and Barber 1981a). Hence the ‘pseudo-critical points’ 
Ah, defined such that RM(Ah) = 1, should converge to the bulk critical point A,  as 
M -, CO. By extrapolating the sequence Ah, it is usually possible to obtain an accurate 
estimate of A,  (Hamer and Barber 1981b). A glance at figure 3 shows that the same 
approach should also work for a first-order transition of the present sort. 

I 
09 10 11 

A 

Figure 3. The scaled mass-gap ratio R M ( A )  in the vacuum sector plotted against A ,  for 
the case Q = 12. Each curve is labelled with the lattice size M. The full line is the 
pseudo-critical value R M ( A )  = 1. 

At the point A = 1, however, RM(A) quickly approaches a limiting value which we 
estimate to be 

e-r M+al  lim {RM( 1)) = 0.917 f 0.001, (14) 

This indicates exponential? convergence in M,  

FAA = 1, M )  - constant e-rM, 
M-al 

as noted already by Igloi and S6lyom (1982). This is the normal type of convergence 
expected when the correlation length is finite (e.g. Au-Yang and Fisher 1975). 

t Or ‘linear’ convergence, in the paradoxical jargon of numerical analysis. 
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Since there has been some recent debate about finite-size scaling properties at a 
first-order transition (Fisher and Berker 1982, Blote and Nightingale 1982, Barber 
1982), it is perhaps worth discussing this point further. Consider again the system 
discussed in 9: 1. On a finite lattice, by Rayleigh-Schrodinger perturbation theory, we 
have 

aEo/aA I* = 1  = (11 Vll) (16) 

and 

The ground-state energy E,, is analytic on the finite lattice, but there is a peak in the 
specific heat per site 

F N  = -N-'a2Eo/aA2 (18) 

which develops into a delta-function singularity as N +CO, and gives rise to the laterit 
heat discontinuity in aEo/aA in that limit. Now this divergence of the specific heat is 
due to the asymptotic degeneracy between states 11) and 12), thus: 

where Fmin = min, 1.2 {E: -E: } ,  which by assumption is non-zero. But the operator 
V is a sum of N finite spin operators, and so we may write 

(21) 
where a l ,  a2  are suitably chosen constants. It follows that the finite-lattice specific 
heat diverges inversely with the mass gap in the vacuum sector. A similar result will 
apply to the susceptibility at a first-order magnetic transition. 

Now for a system with finite correlation length, as mentioned above, one would 
normally expect exponential convergence in Mf 

cN (A = 1) < a lN / (E;  -E?) + a2N 

F ~ ( A  = 1) = E;-E: - constant e-rM, (22) M-CC 

which agrees with the behaviour demonstrated above, equation (15). Hence the 
specific heat will diverge exponentially at A = 1, as observed by Blote and Nightingale 
(1982). 

But the (1 + 1 ) ~  field theory has a time dimension which is effectively infinite. For 
a fully finite lattice in d Euclidean dimensions, it is easy to prove (Fisher and Berker 
1982) that the susceptibility and specific heat cannot diverge faster than N = M d ,  
where N is the total number of sites, and M the linear size of the system. It is, 
therefore, natural to expect (Imry 1980, Fisher and Berker 1982) that at a first-order 
transition the system will saturate this bound. Thus the scaling properties at a 
first-order transition depend on the geometry of the system (Barber 1982). 

+ Here M is the linear size of the lattice, i.e. the number of sites on a side, so that N = M d ,  where d is 
the number of spatial dimensions of the lattice. 
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An alternative explanation of these scaling properties exists, in terms of the 
renormalisation group. Nienhuis and Nauenberg (1975) have proposed that first-order 
transitions are controlled by a renormalisation-group fixed point at which one eigen- 
value equals d ,  the dimensionality of the system. Fisher and Berker (1982) have used 
this idea to derive the scaling behaviour outlined above for the fully finite system; 
and Blote and Nightingale (1982) have used it to derive exponential scaling behaviour 
for a system which is infinite in one dimension. 

3.3. Latent heat 

Finally, let us turn to the original problem of estimating the latent heat. If the 
Hamiltonian ( 5 )  is decomposed as in equation (l), one obtains 

H =Ho+tV,  t = A - l ,  
where 

The two lowest eigenvectors of Ho in the vacuum sector can then be calculated by 
standard methods (Hamer and Barber 1981a). A basis of eigenstates of a: was used 
to generate a matrix representation of Ho for each lattice size M ;  and the low-lying 
eigenvectors of this matrix were computed using a conjugate gradient method. The 
2 x 2 matrix { Vii} and its eigenvalues could then be calculated, to an expected accuracy 
of nine significant figures. 

The quantity L M  = (p+  - p - ) / M  provides an estimate of the latent heat €or each 
lattice size M, from equation (4). It is found that these estimates form a smoothly 
convergent sequence, approaching the bulk latent heat as M + 00. The convergence 
of this sequence can be accelerated using the VBS algorithm (Vanden Broeck and 
Schwartz 1979, Hamer and Barber 1981b), which depends on a parameter a.  Table 
1 shows an example, for the case 0 = 12. Here the value a = 0 was found to give 

Table 1. A sequence extrapolation for the latent heat of the 12-state Potts model, using 
an iterated Aitken algorithm. The left-hand column lists the quantity ( p + - p - ) / M  (see 
text) for lattice sizes M = 1, 2, . . . , 8. 

M 
~~ 

12.000 000 00 
8.657 386 37 7.624 531 08 
7.868 342 67 6.864 193 22 6.425 462 35 
7.426 495 23 6.585 990 91 6.323 296 04 6.195 759 18 
7.136 890 86 6.450 877 77 6.266 570 79 6.240 371 23 
6.933 253 27 6.372 916 82 6.248 648 81 
6.783 895 36 6.325 010 47 
6.671 213 24 



Latent heats from finite-size scaling 3093 

the best convergence: then the VBS algorithm is equivalent to an iterated Aitken 
algorithm. This is appropriate for a ‘linearly’ convergent sequence (LM - Lm - 
c1 exp(-c2M)), which is the expected finite-lattice behaviour except in the neigh- 
bourhood of a second-order critical point. By these means, reasonably accurate 
estimates of the bulk latent heat can be obtained. As a check, the sequence (p++ 
p - ) / M  was treated by the same methods: this should converge to Eo/M, from equation 
(7). 

The results are shown in table 2, where the numerical estimates obtained by 
sequence extrapolation are compared with the exactly known values. It can be seen 
that the estimates of Eo/M attain excellent accuracy, down to the fourth decimal 
place. The latent heat estimates are not so precise. It appears that the quantity 
( p + - p - ) / M  converges with an exponent something like half that of the quantity 
(p + + p - ) /M.  It is also apparent that the accuracy decreases as Q approaches 4, and 
the effective scaling behaviour gradually switches over from ‘linear’ convergence to 
‘logarithmic’ convergence (LM - Lm - C ~ M - ‘ ~ ) .  Correspondingly, the favoured a value 
switches from 0 to -1 (Hamer and Barber 1981b). When Q is precisely equal to 4 
(the critical point), the convergence is purely logarithmic, and the VBS algorithm once 
again gives excellent accuracy. 

Table 2. Numerical results are shown for the ground-state energy per site (E , /M)  and 
latent heat ( L )  of Q-state Potts models at A = 1, obtained by the method described in the 
text. The known exact values are also shown for comparison. The column a lists the 
parameter value used in the VBS sequence extrapolations. 

EoIM L 
Q Q Exact Numerical estimate Exact Numerical estimate 

4 - 1  -3.545 18 -3.5453i0.0005 0 ( O i  1)E-4  
5 - 1  -4.622 54 -4.6227 i 0.0005 0.173 18 0.25 k 0 . 2  
6 - 1  -5.679 22 -5.6795i0.0005 0.779 60 0.77 k 0.2 
8 0 -7.754 96 -7.7554iO.0004 2.453 6 2.3 i 0.1 

12 0 -11.834 70 -11.8346i0.002 6.242 0 6.24 i 0.04 

The convergence exponent at Q = 4, defined by 

constant M-“, 
LM M<co 

may be estimated from the numerical results, and is found to be 

U = 2.003 f 0.01 

using the methods of Hamer and Barber (1981b). Now from the usual finite-size 
scaling hypothesis (Fisher 1971, Fisher and Barber 1972, Hamer and Barber 1981a), 
this should correspond to the bulk behaviour, 

L - F”, (28) 0-41- 

where F is the mass gap, or inverse correlation length. But from equations (10) and 
(12), one finds that the expected value of U is f. Thus finite-size scaling appears to 
break down in this instance. The whole question of finite-size scaling in the vicinity 
of a Kosterlitz-Thouless transition merits c!oser investigation (Barber 1982). 
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4. Discussion and summary 

In this paper, we have explored a new and direct method for evaluating the latent 
heat at a first-order transition using finite-size scaling. The method involves the 
calculation of a submatrix spanned by the degenerate ground-state eigenvectors at 
the transition point. It has been shown to provide a smoothly convergent sequence 
of latent heat estimates for finite M ,  which may be reliably extrapolated to the bulk 
limit. 

Some additional evidence has also been found for the remarkable picture of Igloi 
and Solyom (1982), showing the structure of the finite-lattice Hamiltonian eigenvalues 
at a thermal first-order transition. (The details of this structure were presented in 
9: 3.1.) Here, let us merely remark on the characteristic differences between a first- 
and second-order transition. At a second-order transition, a whole band of eigenvalues 
scale down together like 1/M towards the ground-state energy, led in the typical case 
by the mass gap in the non-vacuum sector. In the case of a thermal first-order 
transition, it is only a finite set of eigenvalues in the vacuum sector that dip sharply 
down to become degenerate with the ground state in the bulk limit. Thus the spectrum 
will not show the smooth scaling behaviour characteristic of a second-order transition: 
and in particular, we may expect a crossing of energy levels as the mass gap in the 
vacuum sector drops below that in the non-vacuum sector. In the Potts-equivalent 
eight-vertex modelt, for instance, the dividing line is the case Q = 4, where the two 
mass gaps are in fact identical for all A .  For Q >4,  the vacuum mass gap is always 
smaller. We expect that this characteristic crossing of levels should provide a useful 
signal of thermal first-order transitions in more general models. 

Some discussion was also given of the finite-size scaling behaviour expected near 
a first-order transition. It was argued that one may normally expect exponential 
(‘linear’) convergence to the bulk limit, due to the finite correlation length at the 
transition. From this point of view, the ‘logarithmic’ scaling behaviour found in the 
fully finite system (Le., finite in all dimensions) is anomalous, being imposed by the 
special constraints on that system (Imry 1980, Fisher and Berker 1982). We thus 
argue against the idea that finite-size scaling behaviour at a first-order transition is 
governed by a renormalisation-group fixed point. 
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